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The interfacial dynamics of a sessile water drop was investigated experimentally.
The low-viscosity drop was forced by an underlying diaphragm driven vertically by
a piezoelectric actuator. This high-frequency forcing produced very low diaphragm
displacements, even at high acceleration amplitudes. As the driving amplitude was
increased from zero, the drop exhibited several transitions to states of increasing
spatio-temporal complexity. The first state of the forced drop consisted of harmonic
axisymmetric standing waves that were present for even the smallest diaphragm
motion. Wave modes up to 14 were observed and compared to theoretical results.
As the forcing amplitude increased above a critical value, a parametrically driven
instability occurred that resulted in the appearance of subharmonic azimuthal waves
along the contact line. The critical accelerations and the resulting wavenumbers of
the azimuthal waves were documented. For larger values of the forcing amplitude,
the subharmonic azimuthal waves coupled with the harmonic axisymmetric waves to
produce a striking new lattice-like wave pattern. With a further increase in the forcing
amplitude, the lattice mode disappeared and the interface evolved into a highly
disordered state, dominated by subharmonic wave motion. The characteristics of the
lattice and pre-ejection modes were documented with phase-locked measurements
and spectral analysis. Finally, as the forcing amplitude increased above another
critical value, the interface broke up via droplet ejection from individual wave crests.

1. Introduction
The behaviour of drops, bubbles and interfaces undergoing free and forced

vibrations is a problem of great practical, scientific and technological interest. Liquid
drops vibrate during spray cooling and coating, atomization, ink-jet printing and fuel
injection. James et al. (2003a) used 1 kHz forced vibrations to atomize rapidly small
liquid drops for use in cooling discrete microelectronic circuits. Raindrops falling
on a liquid/air interface can produce bubbles that vibrate to create the underwater
sound of rain (Prosperetti & Oguz 1993). Bubble oscillations have also been explored
as the mechanism for sonoluminescence (Crum & Roy 1994). A wide variety of
gravity/capillary wave patterns have been observed on interfaces, going back to
Faraday (1831). The enormous body of literature that has been generated since then
is largely due to a more general interest in the physics and mathematics of pattern
formation. Faraday waves take place in a simple physical system that can be used for
experimental exploration and verification of mathematical theories.

Free and forced oscillations of unsupported drops have been studied since the
nineteenth century. In his pioneering work, Rayleigh (1879) investigated infinitesimal-
amplitude oscillations of an inviscid incompressible drop. He showed that there
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were an infinite number of discrete fundamental modes (each one described in
terms of a Legendre polynomial) and calculated the corresponding fundamental
frequencies. Prosperetti (1980) included the effect of viscosity in his study of small-
amplitude oscillations of free drops and bubbles. He concluded that the motion
consists of modulated damped oscillations, where the frequency of each damped mode
asymptotically approaches the inviscid normal-mode result as the damping parameter
goes to zero. Trinh, Zwern, & Wang (1982) analysed experimentally the dynamics
of small-amplitude shape oscillations in acoustically levitated drops. Following this
work, Trinh & Wang (1982) quantified some nonlinear aspects of large-amplitude,
free and driven, drop-shaped oscillations. Their work revealed that the drop has
internal circulation even at relatively low oscillation amplitudes. These authors
also reported that large-amplitude oscillations could break up the drop into two
droplets. Tsamopoulos & Brown (1983) analysed moderate-amplitude axisymmetric
oscillations of inviscid drops and bubbles and showed that the frequency of oscillation
decreased as the square of the forcing amplitude increased. Lundgren & Mansour
(1988) extended the previous investigations of free drops to large-amplitude nonlinear
oscillations in a microgravity environment. In their numerical investigation, they
found that large-amplitude oscillations could lead to states that would most likely
precede drop breakup. Basaran (1992) used a finite-element simulation to examine the
fundamental modes of free, viscous drop oscillations at moderate to large amplitudes.
Lee, Anilkumar & Wang (1991) investigated the static shape and instability of an
acoustically levitated, low-viscosity drop, and examined the large-amplitude drop
deformations that ultimately lead to drop disintegration. In one example relevant to
the present work, the drop was forced by direct contact with the acoustic membrane
instead of the acoustic field.

In contrast to oscillating isolated drops, oscillating supported drops, and particularly
their forced oscillations, have not drawn much attention until recently. The first
investigation of a forced supported drop was reported by Rodot, Bisch & Lasek
(1979) exactly a century after Rayleigh’s work. Their experimental study was
motivated by crystal growth in space and focused on the behaviour of liquid
spheres in contact with solid surfaces in simulated microgravity conditions. The
shape, frequency and amplitude of liquid-sphere oscillations were determined as a
function of the sphere and solid–liquid surface dimension, forcing parameters and fluid
viscosity. Strani & Sabetta (1984) examined theoretically the infinitesimal-amplitude
oscillations of inviscid supported drops surrounded by an inviscid fluid. To solve
the problem analytically, they considered a spherical drop and modelled the support
by immobilizing an axisymmetric portion of the interface. They discovered that such
supported drops have an additional mode that is dominated by the Legendre function
P1. This mode represents the displacement of the drop centre of mass along the axis of
symmetry. Such motions are not possible for an isolated drop because of momentum
considerations. Thus, the motion of a supported drop is fundamentally different from
that of an isolated drop. Strani & Sabetta (1988) extended their previous work to
account for the effect of finite viscosity.

Siekmann & Schilling (1989) performed a numerical investigation of the free
vibration of isolated and supported inviscid liquid drops in a low-gravity environment.
Their results agreed almost perfectly with those of Strani & Sabetta (1984), but
deviated considerably from the experimental results of Rodot et al. (1979) as the
drop departed further from the free state. Gañán & Barrero (1990) numerically and
experimentally investigated the small-amplitude free oscillation of inviscid captive
liquid drops, bridges and bubbles surrounded by a liquid or a gas under gravity. They
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showed that resonance frequencies for a drop with a planar support were always
lower than with a spherical support provided the drop was smaller than half a sphere.
Basaran & DePaoli (1994) examined numerically the roles of fluid properties, gravity,
drop volume and initial deformation in the nonlinear oscillations of pendant drops
supported on a solid rod and released from an initial static deformation. Their results
demonstrated the importance of the boundary layer on the rod surface in the drop
dynamics. DePaoli et al. (1995) employed a sweep procedure and experimentally
detected a hysteretic response in the case of drops pendent from the tip of a capillary
tube. They confirmed that two stable oscillatory states are possible at the same value
of the forcing frequency. Wilkes & Basaran (1997) studied arbitrary amplitude, forced
axisymmetric oscillations of a viscous pendent or sessile liquid drop with a fixed
contact line. They established the governing set of parameters for forced supported-
drop oscillations and discussed their relative importance. Wilkes & Basaran (1999)
analysed previous experimental observations by solving the full transient Navier–
Stokes equations and using a sweep procedure in either frequency or amplitude. They
showed that even low-amplitude forcing was sufficient for the onset of hysteresis.

James, Smith & Glezer (2003b) developed an axisymmetric Navier–Stokes solver
to simulate the low-frequency dynamics of a forced sessile drop. Their simulation
was able to capture the interfacial breakup and ejection of a small droplet. Range,
Smith & Glezer (1998) conducted the corresponding experimental work on the mode
shapes of the forced drop and the breakup mechanism for the case of low-mode
excitation. In contrast, James et al. (2003a) focused on rapid drop atomization and
reported that a sessile drop placed on a diaphragm vibrating near 1 kHz undergoes
a hierarchy of instability modes prior to ultimate atomization. Noblin, Buguin &
Brochard-Wyart (2004) investigated forced sessile drop dynamics with an emphasis
on the transition from a pinned to an oscillating contact line that occurs above a
critical acceleration when contact-angle hysteresis is overcome. Noblin, Buguin &
Brochard-Wyart (2005) examined the behaviour of the oscillating contact line during
vertical vibration of large liquid drops (puddles). They focused on the inertial regime
where the contact line becomes unstable to wave-like modes of oscillation called
triplons. Lyubimov, Lyubimova & Shklyaev (2006) reported a theoretical analysis of
natural and forced oscillations of a hemispherical inviscid drop with an emphasis on
contact-line dynamics. Their work also included results with a pinned circular contact
line.

Sessile drops vibrating at high frequencies exhibit dynamics that may be related to
the interfacial dynamics, wave patterns and complex mode interactions seen in liquid
layers vibrated from below, i.e. Faraday waves. Faraday waves have been investigated
in a number of experiments (e.g. Simonelli & Gollub 1989; Douady 1990; Edwards &
Fauve 1994; Gluckman, Arnold & Gollub 1995). The large body of work on Faraday
wave experiments has been reviewed by Miles & Henderson (1990) and Perlin &
Schultz (2000). A review by Gollub & Langer (1999) focused on pattern formation in
a liquid layer and included Faraday wave patterns.

As mentioned above, James et al. (2003a) observed several instability modes in a
sessile drop on a vertically vibrating diaphragm. The present paper explores these
instability modes in more detail. In the next section, the experimental procedure
is described. Section 3 presents visualizations of the four distinct modes that were
observed in the drop. Data that characterize each mode are presented and discussed.
The phase dynamics of some of this data is presented in § 4 to provide a low-
dimensional description of the drop dynamics. A final discussion and some conclusions
are given in § 5.
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Figure 1. Experimental set-up.

2. Experimental procedure
The present work focused on the evolution of the interfacial motion of a sessile drop

vibrated vertically using high-frequency (∼1 kHz) low-amplitude external forcing. The
experimental set-up is presented in figure 1. The actuator used for the drop forcing
was a thin circular iron–nickel diaphragm (0.1 mm thick) with a thin piezoceramic
disk (PZT5, 19.7 mm diameter, 0.12 mm thickness) bonded to its bottom surface. The
diaphragm was clamped around its circumference by an aluminium holder so that its
active diameter was 30 mm. A sinusoidal voltage signal applied to the piezoceramic
disk caused it to expand and contract, producing a sinusoidal vertical vibration of
the diaphragm. A sessile water drop placed at the centre of the top surface of the
diaphragm was forced by this vibration. More details on the actuator design and
auxiliary hardware are discussed by Vukasinovic (2002).

The diagnostics used in the present experiments included simultaneous high-speed
digital video imaging of the forced drop (uniformly illuminated by a ring light
source) and optical measurement of the displacement and velocity at the centre of
the diaphragm using a Polytec optical vibrometer. The laser beam of the vibrometer
was focused on the bottom centre of the actuator and surface motion was detected
remotely using an interferometric technique. An Eppendorf micro-pipette was used
to place a liquid drop of specified volume at the centre of the upper surface of the
diaphragm in all experiments. Drop volumes of 10, 25, 50, 75 and 100 µl were used in
this work. The entire experimental set-up was built on an optical table for isolation
from ambient vibrations. The actuator assembly was protected from air motion within
the room and its temperature was monitored by an attached thermocouple.

The mode shape of the dry diaphragm vibration was characterized using the laser
vibrometer. The basic motion was first visualized using a surface distribution of fine-
grain powder (visualization not shown), which revealed only a single axisymmetric
mode of vibration. Next, the surface velocity was measured phase-locked to the driving
signal at four azimuthal points at the same radius and then along the diameter of
the diaphragm at 30 equally spaced points 1 mm apart. The actuator assembly was
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Figure 2. The radial distributions of: (a) diaphragm acceleration at nine forcing levels with
fd = 1 kHz, and (b) the corresponding normalized acceleration (symbols) and phase (*).
For reference, the solid line is a/a0 = (1 − (r/Rd )

2)2, which is the functional form for the
approximated first mode shape of a clamped circular plate from Leissa & Chern (1992).

traversed relative to the fixed laser beam along a given diameter using a stepper-motor-
controlled horizontal traversing mechanism with a resolution of 3 µm. At each radial
location, the surface velocity was recorded over 1000 driving periods, i.e. about 1 s.

The time-averaged radial distributions of the diaphragm surface acceleration for
nine different driving amplitudes are shown in figure 2(a). Figure 2(b) shows that the
phase of the surface motion, φ, derived from the phase-locked measurements was
uniform along the diameter. Thus, the diaphragm motion was indeed axisymmetric
over this range of driving amplitudes. Figure 2(b) also shows that the acceleration
distributions at the various driving amplitudes scale with the centreline acceleration
a0 and collapse onto a single curve. Leissa & Chern (1992) examined the forced
vibration of a uniform circular clamped plate at frequencies close to the resonance
frequency and showed that the approximate solution, a/a0 = [1 − (r/Rd)

2]2, where Rd

is the active radius, describes the first-mode shape of the plate to within 5 %. The
experimental results are close to this approximate solution, as shown by the solid line
in figure 2(b). This result showed that the surface acceleration of the diaphragm could
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Figure 3. (a) The ramped-amplitude actuator signal (A is the amplitude at time ts), and
(b) the time delay �τ for the data acquisition trigger.

be characterized by a single acceleration measurement. Therefore, all accelerations
reported in the remainder of this paper were measured at the centre of the diaphragm
and the subscript notation is omitted.

It should be noted that in earlier experimental investigations of supported drop
vibrations (e.g. Rodot et al. 1979; DePaoli et al. 1995; Range et al. 1998), forcing
was applied using an electromagnetic shaker, typical operating frequencies were
no larger than about 300 Hz, and acceleration amplitudes were less than 15g.
In the present experiments, acceleration amplitudes could be as high as 1000g at
frequencies of the order of 1 kHz. However, in contrast to these earlier investigations,
the acceleration felt by a liquid drop on the top surface of the diaphragm has a
significant radial variation, i.e. the acceleration has a maximum at the centre and
decreases toward the edge of the diaphragm (see figure 2). For example, in a 100 µl
drop with a nominal radius of 0.29Rd , the acceleration varies along the radius of
the drop by approximately 15 % between the centreline and the drop contact line.
The disadvantage of this acceleration non-uniformity is balanced by the large domain
of frequency and acceleration amplitude over which forced drop instabilities can be
investigated and by the ability of the system to rapidly atomize the drop, as discussed
by James et al. (2003a).

To avoid transient effects and to allow enough time for the instability modes
to fully develop, the experiments reported here were performed with amplitudes of
the forcing signal linearly ramped in time. The time-harmonic driving waveform
was generated by a digital/analogue (D/A) board in a laboratory computer. The
amplitude of the driving signal was increased linearly in time to a predetermined
diaphragm acceleration level A and thereafter held constant, as shown schematically
in figure 3. The slew rate α (or the ramping time ts = A/α) of the driving signal and
the time delay �τ for the data acquisition trigger were varied independently. The
ramping time was taken to be an integer multiple N of the actuator forcing period T

(i.e. ts =N/fd , where fd is the forcing frequency). In all experiments, choosing N > 100
adequately reduced the transient effects of the ramp modulation. Before amplification
of the driving signal, the D/A output was low-pass filtered to minimize the presence
of any higher harmonics that resulted from the digital to analogue signal conversion
process.
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The measurements of James et al. (2003a) showed that the acceleration of the
centre of the diaphragm was weakly nonlinear with respect to the applied voltage
when the acceleration level was near 200g. To minimize these nonlinear effects,
all experimental measurements reported here were performed at peak acceleration
amplitudes substantially lower than 200g when operating at off-resonance frequencies.

A typical method used to characterize the interfacial dynamics of a drop involves
an analysis of the time traces of the drop interfacial displacement in response to
external forcing. One way to measure the amplitude of interfacial waves is to use a
laser beam propagating through the fluid from below and measure the position of
the refracted beam by a position-sensing photodiode (e.g. Mesquita, Kane & Gollub
1992). This method works well when the light-detecting sensor and light source are
located on opposite sides of the liquid (e.g. Christiansen, Alstrøm & Levinsen 1995).
When this is not possible, the source and the sensor must be located on the same side
of the liquid (e.g. Douady 1990; Besson, Edwards & Tuckerman 1996).

Uniform surface illumination and video imaging can be used to measure surface
displacement, but it has the disadvantage that there is no clear relationship between
the collected light intensity and the interfacial displacement. However, in the absence
of a preferred direction in the illumination, it may be assumed that a light intensity
map is a true representation of the surface wave pattern. This latter approach was
the technique adopted in the present work.

A ring light source was used to uniformly illuminate the drop interface. The reflected
light from the drop was recorded by a high-speed camera at 10 000 f.p.s. This frame
rate provided good time resolution for the measurements, but it restricted the field of
view to just a fraction of the drop. The intensity time-history I (t) was sampled for
213 (=8192) frames starting at ts + �τ . The time delay �τ that was used ensured that
the interfacial mode shape was fully established at the prescribed driving amplitude.
Since the illumination was uniform, it was assumed that the image recorded by the
camera was related to the interface shape as long as the light intensity was within the
camera’s 8-bit dynamic range.

The independent external parameters governing the interfacial dynamics of a forced
drop are the driving frequency fd, acceleration a, and slew rate α; the drop volume
V and contact angle θ; the fluid viscosity µ, density ρ, and surface tension σ ; and
gravity g. The slew rate is important only when it is so large that there is not enough
time for the interfacial modes on the drop to become fully developed. This effect
was suppressed in the present results by the experimental procedure. For reference,
dimensional parameters (and the dimensionless parameters discussed next) for the
five drop volumes used in this work are given in table 1.

Dimensionless parameters were formed using the radius of curvature R of a
spherical-cap drop with the given volume and contact angle and the inviscid capillary

time scale
√

ρR3/σ . Thus, the relevant dimensionless parameters used in this work
to describe the evolution of a forced supported drop are the diaphragm acceleration

a∗ = ρR2a/σ and driving frequency ω∗
d =2πfd

√
ρR3/σ , the drop volume V ∗ = V/R3,

and the contact angle θ . Viscous effects are measured by the Reynolds number,
defined as Re =

√
ρσR/µ. The smallest Reynolds number in this work was Re = 313

and that was for the smallest drop. Wilkes & Basaran (1997) showed that viscous
effects were negligible in a supported drop for Re > 20. Thus, the use of inviscid scales
is appropriate.

Gravitational body forces compared to surface tension forces are measured by
the gravity number G = ρR2g

/
σ which varied from 0.40 to 2.02 in this work. These

values suggest that gravity effects could be important, especially at the largest drop
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Computed drop parameters

Measured drop Static drop with Spherical-cap drop Dimensionless
parameters gravity (no gravity) drop parameters

Drop Contact Contact Contact Contact Radius of Drop Gravity
volume angle radius radius radius curvature volume number
V (µl) θ (deg.) Rc (mm) Rc (mm) Rc (mm) R (mm) V ∗ G

10 88 1.66 1.76 1.71 1.71 1.98 0.40
25 87 2.42 2.46 2.35 2.35 1.93 0.76
50 86 3.24 3.19 2.98 2.99 1.88 1.22
75 85 3.70 3.74 3.44 3.45 1.82 1.63

100 84 4.12 4.20 3.82 3.84 1.77 2.02

Physical properties of water

Density, ρ Viscosity, ν Surface tension, σ

998 kgm−3 1.12 × 10−6 m2 s−1 71.4 × 10−3 kg s−2

Table 1. Dimensional and dimensionless drop and fluid parameters.

volume. A static drop flattens and spreads out under gravity. Standard capillary shape
computations for the largest drop size in this work show that the contact radius of the
drop with gravity is 10 % larger than the contact radius of a spherical-cap drop with
the same volume and contact angle (without gravity). The measured contact radii for
all the drops examined in this work were within 2 % of the computed contact radii
for the drop with gravity, except for the smallest drop, which was 6 % smaller. Thus,
gravity caused the drops to spread out by at most 10 %. However, this change in the
drop shape and any other gravity effects did not seem to affect the dynamical motion
of the drop observed in this work.

The comprehensive characterization of the drop dynamics over the full range of
driving accelerations and frequencies as presented in this work was only done for
the largest drop size V = 100 µl (V ∗ = 1.77). These results were supplemented with
additional measurements on four smaller drops (see table 1 for values) for two
instances (figures 7 and 11).

3. Interfacial wave patterns of the forced drop
3.1. General overview

Several interfacial wave patterns in a forced sessile drop as the forcing amplitude
was increased from zero are shown in the sequence of side-view, high-speed images
(500 f.p.s.) in figure 4. The forcing frequency was 1040 Hz (the linear resonance
frequency of the coupled drop/diaphragm system was 980 Hz) and the slew rate
of the forcing signal was 50g s−1 (0.048 g/driving period). The unforced water drop
(100 µl) is shown for reference in figure 4(a). Axisymmetric standing waves appeared
on the interface (figure 4b). These axisymmetric waves were present even at the lowest
forcing amplitude used in this study (∼ 0.5 g). This motion is a basic mode shape of
oscillation for a supported drop.

At larger forcing amplitudes, an azimuthal instability of the basic mode shape
appeared along the contact line of the drop resulting in a loss of the axial symmetry
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Figure 4. Motion in a 100 µl drop (V ∗ = 1.77) with slowly ramped forcing at ω∗
d = 183.8:

(a) unforced, (b) axisymmetric waves (a∗ = 30.3), (c) coupling of axisymmetric and azimuthal
waves (a∗ = 56.6), (d) pre-ejection state (a∗ = 323.3), (e) ejection onset (a∗ = 351.6), and
(f ) atomization (a∗ = 371.8).

of the interfacial shape (figure 4c). For a given fluid and drop volume, the threshold
amplitude of this azimuthal instability increased with increasing driving frequency
and decreased with increasing slew rate of the driving signal. Further increases in
the forcing amplitude resulted in an increase in the amplitude and spatial complexity
of the interfacial waves (figure 4d). Eventually, the interfacial wave motion became
intense enough to result in the ejection of secondary droplets from the wave crests
(figure 4e). It is noteworthy that when droplet ejection occurred, the amplitude of the
wave motion on the entire interface of the primary drop was approximately uniform
and the ejection sites were uniformly distributed (determined by visual inspection).
Shortly after the onset of droplet ejection, the process accelerated rapidly and the
primary drop completely atomized (figure 4f ) over a time interval of about 0.3 s
(300 T ).

The main interest of the present paper is the sequence of instabilities exhibited
by the primary sessile drop as it was forced over a range of forcing amplitudes
from 0g–135g, which takes the drop from rest to the pre-ejection mode. A closer
inspection of the resulting wave patterns are shown in a sequence of top-view high-
speed (1000 f.p.s.) video images in figure 5. The forcing amplitude slew rate for this
sequence was 12g s−1(0.013g/driving period). The axisymmetric basic mode shape is
shown in figure 5(a). The azimuthal instability was triggered along the contact line
when the forcing amplitude was 18g–22g (figure 5b). The azimuthal motion spread
across the entire interface of the drop as the forcing amplitude increased (figure 5c).
For forcing amplitudes near 34g–38g, the interface wave pattern changed to one with
a well-defined sixfold symmetry (figure 5d). This wave pattern, called the lattice mode,
has five azimuthal rings at different radii with each ring shifted azimuthally by π/6
relative to the adjacent ring. When the forcing amplitude was 55g–60g, the sixfold
symmetry of the waves in each ring appeared to be replaced by azimuthal waves with
a higher wavenumber (figure 5e). Finally, when the forcing amplitude was 130g–135g,
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(d) (e) ( f )

Figure 5. Motion in a 100 µl drop (V ∗ = 1.77) with slowly ramped forcing at ω∗
d = 159.6:

(a) axisymmetric waves (a∗ = 33.2), (b) just above the onset of azimuthal waves (a∗ = 42.0),
(c) full axisymmetric breakdown (a∗ = 56.0), (d) lattice mode (a∗ = 77.8), (e) lattice breakdown
(a∗ = 115.2), and (f ) the pre-ejection mode (a∗ = 271.8).

the entire interface was covered by a random distribution of wave cells that preceded
droplet ejection (Figure 5f ). The acceleration thresholds of the various instabilities
increased with increasing driving frequency.

It is noteworthy that the interface (and internal) motions associated with these
instabilities resulted in radial spreading of the primary drop. This effect was most
pronounced at high forcing levels. For example, the difference between figures 5(a)
and 5(f ) show that the nominal diameter of the drop (as measured by the outer dark
band) increased by 12 % over the time the drop was forced to the pre-ejection state.
Radial expansion of the contact line is also evident between figures 4(a) and 4(e).

These results show that a forced sessile drop exhibits four distinct wave patterns,
namely, axisymmetric standing waves, azimuthal waves, the lattice mode, and pre-
ejection waves, each separated by a transition. In the remainder of this section, detailed
measurements of each wave pattern and their associated transitions are presented.

3.2. Axisymmetric standing waves

The high driving frequencies used in this study enabled much higher axisymmetric
modes to occur in the drop than in earlier investigations (e.g. Rodot et al. 1979;
DePaoli et al. 1995; Range et al. 1998). Most of this previous work examined the
first few low-order mode shapes of the drop with frequencies no larger than 300 Hz.
The low viscosity of the liquid used in the present work reduced wave damping in
the drop so that the higher modes with frequencies of the order of 1 kHz were easily
sustained at observable amplitudes.

The mode number m of each axisymmetric mode of oscillation of the drop and the
corresponding resonance frequency fm were measured using the following process.
The frequency of the forcing signal was set to its highest value within the nominal
operating range of 0–1000 Hz and the amplitude of the signal was set to its smallest
possible value, which corresponded to an acceleration of 0.5g. The frequency of
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Figure 6. Detection of the axisymmetric mode number m (V ∗ = 1.77, a∗ = 1.0): (a, d) raw
images of the drop half-profiles with a 180◦ phase difference, (b, e) the corresponding drop
interfaces, and (c) inverted image of subtracted interfaces showing the mode number m= 11.
Image (f ) is a subtracted interfaces image from a computer-generated drop mode m= 11.

the forcing signal was then decreased at a rate of 2 Hz s−1 while the acceleration
amplitude at the centre of the diaphragm was held fixed using a feedback control loop.
Simultaneously, a side view of the drop was recorded (orthogonal to a central meridian
plane of the drop) using high-speed video with back illumination. This illumination
resulted in a liquid–air interface with sharp contrast (see figures 6a, d). The interface
was extracted from individual drop images using the Sobel edge-detection algorithm
(e.g. Pratt 1978). In the absence of forcing, this edge-detection procedure yielded
interface shapes for static drops that matched numerically determined shapes for the
different drop volumes used in this study (Vukasinovic 2002). These static shapes also
showed that the drop contact angle θ varied between 84◦ and 88◦ and was biased
toward larger values for smaller drops.

As the driving frequency decreased, the drop passed through a series of axisymmetric
resonance modes. The corresponding resonance frequency fm was determined by
finding the maximum magnitude of the interface oscillation through visual inspection.
The error in this measurement was approximately ±3 %.

For each axisymmetric mode, the corresponding mode number m is defined by the
number of node points on half the drop, i.e. the number of intersections between the
interface images of a forced and an unforced drop at half its profile (e.g. Wilkes &
Basaran 1997; Strani & Sabetta 1984). Because the interface displacements in this
investigation were extremely small, two interface images of the forced drop at extremes
of its motion and exactly opposite in phase were used (figures 6b and 6e, respectively).
These interface images were subtracted and the resultant image inverted to give the
image shown in figure 6(c). The mode number is equal to the number of individual
gaps in this image; in this case m =11. Figure 6(f ) is an idealized version of the
inverted and subtracted image in figure 6(c) from a computer-generated drop mode
m = 11 that clearly shows the gaps that define the mode number m.

The axisymmetric standing waves in the present study were induced even at
the lowest possible acceleration amplitude for this actuator system (5 m s−2), which
was based on the highest forcing frequency (∼ 1 kHz) and the smallest diaphragm
displacement amplitude (∼1 µm) that was used. Despite this substantial minimum
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axisymmetric standing waves with drop volumes V ∗ = 1.77 (�), 1.82 (�), 1.88 (�), 1.93 (∇) and
1.98 (�). See table 1 for other drop parameters. The other experimental and theoretical data
are: Noblin et al. (2004) (– — � – —), the experimental asymptote ω∗

m ∼ m3/2 (—), Strani &
Sabetta (1984) (�), free half-drop oscillations (�), pinned half-drop oscillations from Lyubimov

et al. 2006 (�), and the theoretical asymptote ω∗
m =

√
8m3/2 (- - -).

acceleration amplitude, the onset threshold for axisymmetric waves in the forced
drop is most probably zero since this is the expected behaviour of a single-degree-
of-freedom system in the limit of small forcing amplitude, i.e. a spring-mass-damper
system in resonance.

The diaphragm oscillation displacement amplitude was at least three orders of
magnitude smaller than the drop radius, so nonlinear effects in the axisymmetric
motion of the drop were negligible. Also, the Reynolds number Re > 310 for these
experiments, so viscous effects were negligible. Thus, it is reasonable to assume that
the measured resonance frequencies are equal to the natural frequencies ωm of an
inviscid sessile drop. The natural frequencies of an inviscid drop supported by a
planar surface with a fixed contact line depend only on the drop geometry (radius of
curvature R of the equivalent spherical-cap drop and contact angle θ), fluid properties
(surface tension σ and density ρ), gravity g, and mode number m. In dimensionless
form, this is

ω∗
m = ωm

√
ρR3/σ = func(m, θ, G), (1)

where the gravity number G = ρR2g
/
σ .

The dimensionless frequency ω∗
m versus the mode number m for axisymmetric drop

motion is plotted in figure 7 for five drop volumes (10, 25, 50, 75 and 100 µl). See
table 1 for other relevant drop parameters. The measured data have collapsed to
a single curve whose large-wavenumber asymptote is the power law ω∗

m ∼ m3/2. The
collapse of the data shows that variations in shape due to gravitational spreading
are not important with respect to this axisymmetric motion for this parameter range.
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Mode ωm (rad s−1) ωNBBW
m (rad s−1) Relative difference (%)

1 213.6 205.5 −3.8
2 465.0 451.1 −3.0
3 772.8 752.7 −2.6
4 1124.7 1097.7 −2.4
5 1489.1 1499.2 0.7

Table 2. Resonance frequencies of the first five axisymmetric modes for a 100 µl water drop
measured in the current work (ωm) and in the work of Noblin et al. (2004) (ωNBBW

m ) and the
relative difference.

Note that for these measurements, the video images showed that the contact line of
each drop appeared to be pinned to the surface of the diaphragm.

The measured resonance frequencies from Noblin et al. (2004) for the first five
axisymmetric modes of a pinned water drop with a volume of 100 µl and an equi-
librium contact angle θ = 84◦ are also plotted in figure 7 and given in table 2. Note
that the mode number m in the present work corresponds to Noblin et al.’s mode
m + 1. The agreement between these experiments and ours is good, differing from
each other by at most 4 %.

Lamb (1932) analysed a spherical free drop undergoing inviscid incompressible
infinitesimal-amplitude axisymmetric oscillations within an inviscid external fluid of
density ρe. His result for the natural frequencies is

ω∗
m =

√
(m − 1)m(m + 1)(m + 2)

m + 1 + mρe/ρ
. (2)

The even modes of oscillation of the full free drop are symmetric about the equator of
the sphere and so they represent the oscillation of a hemispherical drop on a planar
surface with a mobile contact line and a fixed contact angle of 90◦. Numbering these
even modes as m/2 → m for m =2, 4, . . . , gives the filled square symbols in figure 7.
These data are below the experimental data because the contact line of the drop is
mobile, not pinned.

Strani & Sabetta (1984) computed the natural frequencies of a supported drop by
considering a liquid sphere with a lower axisymmetric portion of the interface treated
as rigid. This change in the boundary condition on the surface of the sphere was an
attempt to model a supported drop. The results for the case of a hemispherical liquid
surface are the filled circles in figure 7. These frequencies are larger than those of the
free half-drop, but still less than the experimental data. The natural frequencies from
the theoretical work of Lyubimov et al. (2006) for the first three axisymmetric modes
of a pinned hemispherical drop are shown in figure 7 with the filled diamonds. These
compare well with the results from Strani & Sabetta (1984).

One possible reason for the lower theoretical frequencies compared to the
experimental data is the hemispherical drop shape in the theory (a zero-gravity
condition), whereas there is a small amount of drop flattening due to gravity as the
drop volume increases in the experiments. However, the collapse of the experimental
data into a single curve, as shown in figure 7 for G < 2, argues against this reason.

As the mode number increases, both the results of Strani & Sabetta (1984) and those
of the free half-drop appear to approach the limiting case of axisymmetric, planar
standing waves on the surface of a hemispherical drop (neglecting depth effects),
which has the dispersion relation of ω∗

m =
√

8m3/2. The experimental data seem to
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Figure 8. (a, d, g, j ) The light intensity fluctuation i(t/T ), (b, e, h, k) the corresponding
power spectrum P (f/fd ), and (c, f, i, l) the corresponding autocorrelation function γ (t/T ).
The dimensionless frequency ω∗

d = 159.6 and V ∗ =1.77 for all measurements. (a, b, c) The
axisymmetric mode at r/Rc = 0.6 and a∗ = 13.3, (d, e, f ) azimuthal waves at r/Rc =0.93 and
a∗ = 42.0, (g, h, i) the lattice mode at r/Rc = 0.6 and a∗ =77.8, and (j, k, l) the pre-ejection
mode at r/Rc = 0.6 and a∗ = 275.0.

approach this same power-law behaviour, but with a slightly higher frequency than
the analytical results. Physically, this means that at high mode numbers, the qualitative
response of the drop is less sensitive to the presence of the support.

The frequency content of the axisymmetric interface motion of the drop for any
mode number m was determined from measurements of the light intensity I (t) taken
from the video image of a top view of the drop interface at a fixed radial location.
The fluctuation of the light intensity is defined as i(t) = I (t) − I , where I is the
time-averaged intensity at this fixed location. As long as the motion is axisymmetric,
i(t) is representative of the entire interfacial motion up to a multiplicative constant.

Axisymmetric standing waves with m =13 were forced in a 100 µl drop at
an acceleration of 6.6g and a driving frequency of 903 Hz (V ∗ = 1.77, a∗ =13.3,
ω∗

d = 159.6). The fluctuation of the light intensity at r = 0.6 Rc, where Rc is the contact
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radius, is shown in figure 8(a). The corresponding power spectrum P (f/fd) and the
normalized autocorrelation function γ (τ ), defined as

γ (τ ) =

∫ ∞

−∞
i(t)i(t + τ ) dt

/∫ ∞

−∞
im(t)i∗

m(t) dt, (3)

are given in figures 8(b) and 8(c), respectively. Both i(t) and γ (τ ) are shown for 100
driving periods T . The major content of the power spectrum occurred at the driving
frequency fd . The first four higher harmonics are one to two orders of magnitude
lower. The power spectrum of the bare diaphragm also included spectral peaks at
these harmonics. However, the first harmonic for the bare diaphragm was four to
five orders of magnitude lower than the fundamental spectral component, even at the
much higher forcing levels that typically lead to droplet ejection. Therefore, the higher
harmonics measured on the drop interface were most probably generated by nonlinear
wave interactions, rather than by nonlinear diaphragm motion. The slow decrease in
the envelope of the autocorrelation function in figure 8(c) can be attributed to the
presence of these higher harmonics and noise. As the forcing amplitude increases and
approaches the acceleration threshold for the azimuthal instability (a∗

a =36.4), the
magnitudes of the higher harmonics in the wave motion also increase.

Further discussion of the spectral content of the interfacial motion for the azimuthal,
lattice and pre-ejection modes, including the appearance of subharmonic motion in
these modes is presented in § 3.3, 3.4 and 3.5, respectively.

3.3. Azimuthal waves

When the forcing amplitude was increased above aa =18g for a 100 µl drop forced
at fd = 903 Hz (a∗

a = 36.4, V ∗ = 1.77, ω∗
d =159.6), an azimuthal instability of the drop

interface was triggered along the contact line (figures 4c and 5b). The azimuthal waves
were initially stationary, but as the forcing amplitude increased further, they began to
rotate either clockwise or counterclockwise. Either direction was possible because of
the rotational symmetry of the waves around the drop and the effect of small random
perturbations in the system. Further increases in the forcing amplitude caused the
azimuthal waves to propagate inward, until finally, when the forcing amplitude was
about a∗ =55–60, the azimuthal waves were fully coupled to the axisymmetric waves
and had spread to the top of the drop (figure 5c).

The fluctuation light intensity i(t) from the interfacial motion associated with
azimuthal waves is shown in figure 8(d) for the radial position r = 0.93 Rc (near the
drop contact line) with the forcing conditions a = 20.8g and fd = 903 Hz (a∗ = 42.0 and
ω∗

d = 159.6). The corresponding power spectrum P (f/fd) and autocorrelation function
γ (τ/T ) are shown in figures 8(e) and 8(f ), respectively. The power spectrum and the
autocorrelation function indicate that the dominant frequency of the azimuthal waves
is the first subharmonic of the driving frequency fd/2. Furthermore, the spectral peaks
at integer multiples of fd/2, which were not present in the power spectrum of the
bare diaphragm, indicate the presence of nonlinear coupling between the subharmonic
azimuthal waves and the axisymmetric waves at the fundamental frequency and its
higher harmonics.

Although the azimuthal waves were initially triggered along the drop’s circum-
ference, the resultant subharmonic frequency response was detectable across the
entire interface of the drop. This is demonstrated in figure 9 where the power spectra
of the light intensity fluctuation at four radial locations on the drop are shown.
The forcing conditions were the same as for figures 8(d)–8(f ). The energy content
of the interfacial motion was largest near the contact line (figure 9a) and decreased
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Figure 9. The power spectrum of the light intensity fluctuation i(t/T ) for azimuthal waves at
(a) r/Rc = 0.93, (b) 0.75, (c) 0.5, and (d) 0.05. The dimensionless forcing frequency ω∗

d =159.6,
V ∗ = 1.77 and the forcing acceleration a∗ = 42.0, which are the same conditions as for the
azimuthal waves shown in figures 8(d)–8(f ). The subharmonic frequency is marked by the
dotted line.

toward the centre of the drop (figure 9b–d). This indicates that the excited azimuthal
instability mode was strongly amplified along the drop’s circumference, but not near
the centre of the drop.

The subharmonic frequency response of the drop suggests that the azimuthal wave
instability is a parametrically driven instability similar to Faraday waves. Noblin
et al. (2005) suggested that these azimuthal waves are the high-wavenumber analogue
of the low-wavenumber subharmonic triplon modes that they studied in large flat
liquid drops (puddles). However, in their experiments, the vibrating drop developed
the triplon instability only after a transition from a pinned to a moving (oscillating)
contact line. In the present experiments, the contact line appeared to stay pinned until
the appearance of the azimuthal instability.

Threshold acceleration versus driving frequency data for the azimuthal instability
are presented in figure 10 for a 100 µl water drop with the dimensionless volume
V ∗ = 1.77. The measurement was done in three different ways: (i), (ii) fix the
acceleration and perform an increasing and then a decreasing frequency sweep at
a rate of 2 Hz s−1 (open triangles), and (iii) fix the driving frequency and increase the
driving amplitude at a rate of 12g s−1 (filled triangles). All of these measurements
agree fairly well with each other. The results indicate that the threshold acceleration
increases monotonically with the driving frequency.

There seems to be no analytical work on the azimuthal instability in a sessile drop
available in the literature. The closest comparable work is the Faraday capillary-wave
instability. The threshold acceleration for inviscid Faraday waves in a liquid layer
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Figure 10. The threshold acceleration versus driving frequency for the onset of azimuthal
waves in a 100 µl water drop (V ∗ =1.77). Experimental data for: an increasing (�) and
decreasing (∇) frequency sweep, an amplitude sweep (�), the analytical result of Christiansen
et al. (1995) a∗

a = 4k∗
aω

∗
d/Re (- - -), and Kumar’s (1996) solutions for an equivalent viscous liquid

layer of depth h = 2.6 mm (–·–) and 0.95 mm (—).

of finite depth is zero (Benjamin & Ursell 1954). Viscous damping effects cause the
threshold acceleration to be non-zero, as shown by Miles (1984). Landau & Lifschitz
(1987) computed the damping coefficient for gravity waves in a finite liquid layer
by computing the viscous dissipation in the bulk liquid based on the potential-flow
solution for the waves. The result was a damping coefficient C = 2νk2. Christiansen
et al. (1995) added a viscous damping term with this damping coefficient directly
to the linearized disturbance equation for a finite liquid layer (Mathieu’s equation).
Their result for the threshold acceleration written in dimensionless form using the
inviscid scales from the present paper and applied to the azimuthal waves is

a∗
a =

4k∗
aω

∗
d

Re tanh(k∗
ah

∗)
. (4)

For the wavenumbers observed in the azimuthal waves (see below) and any reasonable
value for the drop thickness, tanh(k∗

ah
∗) ≈ 1. This means that the capillary waves do

not feel the bottom surface, i.e. they behave like deep-water capillary waves. This
result is plotted (with tanh(k∗

ah
∗) = 1) as the dashed line in figure 10. The result

underestimates the threshold acceleration for the drop by a factor of about two.
Thus, bulk damping is probably not important with respect to the azimuthal wave
instability of a forced sessile drop.

Besides viscous damping in the bulk liquid, there are three other sources of damping
in the drop: a viscous boundary layer along the solid–liquid interface; capillary
damping due to a moving contact line; and interfacial damping due to an interfacial
boundary layer. The characteristic length scale for a viscous wall boundary layer in
the present experiments is lv = (ν/ω)1/2. At its largest, lv < 0.02 mm and lv/R < 0.01.
Thus, it is believed that the wall boundary layer away from the contact line does not
contribute significantly to the overall damping.
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The contribution of contact-line dynamics to the damping has started to become
fully understood only recently (e.g. Lyubimov et al. 2006) following the pioneering
work of Miles (1967, 1991) and Hocking (1987). Despite careful examination of the
incipient azimuthal wave motion near the contact line in the present experiments,
there is no conclusive evidence of significant macroscopic oscillatory motion of the
contact line. If such motion existed, it was very small and obscured by the interfacial
motion of the azimuthal waves near the contact line. Thus, damping due to a moving
contact line is probably not important for azimuthal waves.

The last source of damping in the drop is an interfacial boundary layer caused
by contamination of the interface, which is known to significantly increase damping
rates (e.g. Henderson 1998). Distilled water was used in the present experiments
and its purity and the possible contamination of the air/water interface were
considered throughout the work because virtually no water is pure and free of
contaminants. The most conservative estimate of the time required to contaminate
a clean air/distilled-water interface was given by Henderson & Miles (1994). They
estimated that contamination becomes important in about 5 min. Besides promoting
non-contamination by following strict procedures in storing, cleaning and shielding
experimental surfaces, it is also important to note that typical experiments in the
present work were very short – most of them were under 1 min in duration owing
to the high forcing frequencies used (hundreds of Hz). The data shown in figure 10
are worst-case examples with respect to surface contamination in the present work.
Here, the duration of individual experiments was several minutes and different sets
of data were collected on different days. Although there is some scatter in the data,
no significant variation in the threshold acceleration for azimuthal waves is observed.
This result precludes the effect of damping due to interfacial contamination and
an interfacial boundary layer. Thus, the most likely cause for the higher threshold
acceleration compared to that predicted by (4) is additional viscous damping in the
contact-line region of the drop, a finite-thickness effect, and/or the compact geometry
of the drop compared to the layer.

The scaling for the threshold acceleration in (4) can be obtained using the following
argument. The threshold acceleration aa must overcome the viscous damping in the
system. Therefore, aa ∼ VC, where V is a typical velocity scale and C is the viscous
damping coefficient with units of inverse seconds. For Faraday waves, the velocity
scale depends on the forcing frequency and the wavenumber of the waves in the form
V ∼ ωd/ka . The net result is

aa ∼ ωdC

ka

. (5)

Substituting the damping coefficient for bulk viscosity used by Christiansen et al.
(1995), C = 2νk2

a , into (5) yields the scaling relation aa ∼ kaωdν. This is the same
scaling as the dimensional form of (4). The tanh(k∗

ah
∗) factor in (4) is a geometry

effect and cannot be given by a scaling analysis.
A least-squares best fit to the data in figure 10 yielded the relation aa ∼ ω1.446

d . This
does not match the linear scaling with frequency derived above from a bulk-liquid
viscous damping coefficient, but it does suggest a frequency exponent of 3/2. Based
on the idea that viscous effects determine the threshold acceleration, a scaling analysis
was done assuming a frequency exponent of 3/2 and neglecting surface-tension effects.

The result is aa ∼ ω
3/2
d ν1/2. Substituting this into (5) gives the scaling for the viscous

damping coefficient as C ∼ ka(ωdν)1/2.
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Kumar (1996) considered Faraday waves in a viscous liquid layer of finite depth
by starting with the original governing equations including viscosity. The leading-
order damping coefficient in the limit of small viscosity from his equation (5.2)
is C = 2k(ων)1/2/sinh(2kh). The scaling of this result agrees with the scaling for
the experimental data. This gives support to the idea that viscous damping in the
boundary layer along the solid boundary is responsible for the threshold acceleration
of azimuthal waves in the forced drop. The only place where interfacial motion could
produce a viscous boundary layer on the solid wall with a size comparable to the
drop thickness is in the contact-line region where the drop is thinnest.

Kumar’s result is plotted in figure 10 using the inviscid scales of this paper and a
characteristic length scale of h = 2.6 mm, which is the mass-averaged depth of the drop.
The curve is just above the Christiansen et al. (1995) result, and still underestimates
the measured critical acceleration. In a planar layer 2.6 mm thick, interfacial motion
does not produce much of a viscous wall boundary layer, bulk viscous damping is
dominant, and so the result should be close to Christiansen et al.’s. For a planar
liquid layer of thickness h = 0.95 mm, viscous wall damping becomes as important
as bulk damping for the lower frequencies and the resultant curve passes through
the experimental data. Comparing the liquid layer results to the drop results in this
way is risky because of the different geometries of the interfaces in these two cases.
However, the experimental data do suggest that the instability originates near the
contact line (see figure 9 and the discussion above), which is the only place where a
viscous wall boundary layer could be produced and have an effect on the interfacial
motion. Thus, the agreement between the experimental data and Kumar’s result for
a layer thickness of 0.95 mm suggests that a viscous boundary layer near the contact
line is important to the onset of the azimuthal instability in a forced sessile drop.

If the scaling analysis above is correct, the threshold acceleration depends on the
viscosity as ν1/2. So, for example, increasing the fluid kinematic viscosity by a factor
of ten would increase the threshold acceleration by a factor of ∼3.2. However, at such
high forcing levels, the amplitude of the axisymmetric interfacial waves may be large
enough to make them unstable to another mode of instability before the onset of the
azimuthal instability. In an initial test with a glycerine/water solution whose viscosity
was about twenty times that of pure water, the first observed instability occurred over
the entire interface of the drop, i.e. the azimuthal instability along the contact line did
not occur. Further work on the relationship between fluid viscosity and the threshold
acceleration is discussed by Vukasinovic, Smith & Glezer (2007).

The dimensionless wavenumber of the azimuthal instability k∗
a = 2πR/λa , where λa

is the wavelength of the unstable motion, was found by counting the number of
azimuthal wave periods na around the contact line at the onset of the instability. The
wavenumber is related to na by k∗

a = naR/Rc, where Rc is the measured contact radius
of the drop. This result is presented as a function of the dimensionless frequency
of the azimuthal instability ω∗

a =ω∗
d/2 in figure 11 for three drop volumes V ∗ = 1.88,

1.82 and 1.77 (50, 75, and 100 µl) with contact radii Rc =3.24, 3.70 and 4.12 mm,
respectively. For comparison, the well-known dispersion relation for inviscid capillary
waves on a liquid layer of finite depth h is ω2 = (σ/ρ)k3 tanh(kh) (Lighthill 1978).
The smallest value of the dimensionless wavenumber from figure 11 is k∗ = 8 for the
50 µl drop, which gives k =2.68 mm−1. As before, it is not clear what liquid depth is
appropriate, but choosing h = 0.95 mm gives tanh(kh) = 0.988. Therefore, the liquid-
depth effect in the drop is negligible. The resulting dimensionless dispersion relation
for inviscid deep-water capillary waves, ω∗

a = k∗3/2
a , is plotted in figure 11. The results

of Kumar (1996) for h =2.6 mm and 0.95 mm are also presented in this figure. These
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Figure 11. Variation of the dimensionless wavenumber k∗
a with the subharmonic frequency

ω∗
a = ω∗

d/2 for azimuthal waves with drop volumes V ∗ = 1.77 (�), 1.82 (�), and 1.88 (�).
The deep-water capillary-wave dispersion relation (- - -) and Kumar’s (1996) solutions for the
equivalent viscous liquid layer of depth h = 2.6 mm (–·–) and 0.95 mm (—) lie on top of each
other.

curves lie on top of the inviscid curve. The experimental wavenumbers are always
smaller than those for inviscid deep-water capillary waves and Kumar’s results at
any given frequency. A least-squares power-law fit to the experimental wavenumbers
yields an exponent of 1.34, about 10 % smaller than 1.5. In addition, it looks as if the
slope of the experimental data for each drop volume is slightly different.

One explanation for the smaller experimental values of the wavenumber compared
to the values from the inviscid dispersion relation for a given frequency is the effect
of viscous dissipation increasing the wave length of the azimuthal waves. The fact
that Kumar’s results lie on top of the inviscid result indicates that bulk viscosity in
a liquid layer of finite depth is not the source of this dissipation. Another possibility
is the viscous boundary layer on the lower solid surface. The time scale for vorticity
transport from the solid surface across a distance � is tv = �2/ν. Setting this time scale
equal to the inertial time scale 1/ωa leads to the conclusion that in the worst case,
the distance � is two orders of magnitude smaller than the corresponding wavelength
λa . Thus, viscous dissipation from the solid surface for a liquid layer is typically
neglected. However, the previous discussion that viscous boundary-layer effects in the
contact-line region of the sessile drop may affect the threshold acceleration of the
azimuthal-wave instability implies that such effects could also influence the motion
of azimuthal waves. Thus, viscous effects from the lower boundary near the contact
line may be the explanation for the smaller wavenumbers of the azimuthal waves
compared to deep-water capillary waves, as seen in figure 11.

A mechanism for the azimuthal instability is suggested by several of the observations
discussed above. First, the interfacial displacement is significant along the contact line
of the drop in the axisymmetric state just before onset of the azimuthal instability
(figure 4b). Secondly, the origin of the subharmonic motion is near the contact line
(figure 9). Finally, the wave length of the azimuthal mode closely follows the trend
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Figure 12. Time variation of the lattice mode in figure 5(d) at (a) t/T = 0, (b) 0.9, (c) 1.8,
(d) 2.7, (e) 3.6, (f ) 4.5, (g) 5.4, (h) 6.3 (i) 7.2, (j ) 8.1, (k) 8.9, and (l) 9.9. Experimental conditions
correspond to those of figure 5(d).

of Faraday capillary waves offset by some amount attributed to viscous damping
(figure 11). These observations suggest that the instability is a Faraday capillary-wave
instability of the axisymmetric base state owing to the radial motion of the interface
near the contact line. The vertical motion of the support is translated to radial motion
of the interface by the geometry of the sessile drop. The near-90◦ contact angle causes
this radial motion to be nearly normal to the interface at the contact line. Thus, it is
reasonable to suppose that the interface of the drop near the contact line will develop
a Faraday instability to capillary waves.

It is also noteworthy that the triplon modes observed in large flat liquid drops by
Noblin et al. (2005) are subharmonic (parametric with respect to the forcing) and
that their dispersion relation scales as ω ∼ k3/2; both of which agree with the observed
azimuthal waves in the present work.

3.4. The lattice mode

Following the onset and spreading of the azimuthal instability, a new mode emerged
in the form of a striking azimuthal lattice structure with a well-defined sixfold
symmetry (figures 5d and 12). The onset forcing amplitude for this mode was al =38g

at a forcing frequency of fd = 903 Hz (a∗
l =76.8 and ω∗

d = 159.6). To the best of our
knowledge, this wave pattern has not been reported previously in the literature. For
the lattice mode to form, the wavenumbers for the axisymmetric waves and the
azimuthal waves in the drop must attain a unique relationship to each other.

Once the lattice mode is fully developed, the wave pattern itself is time periodic.
A sequence of high-speed video images captured at equal time increments of 0.9 T ,
where T is the fundamental driving period, is shown in figure 12. Each image exhibits
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four to five adjacent circular azimuthal bands of increasing radius having an integer
number of waves. The image sequence shows that the wave pattern in each band
shifts azimuthally and, at the same time, the amplitudes of the azimuthal waves vary
periodically. The period of the lattice mode from this image sequence is 9.9 T , which
gives a modulation frequency of 0.1 fd (90.3 Hz).

Time traces of light intensity for the lattice mode were measured at r/Rc = 0.6 with
drop forcing conditions of a = 38.5g and fd = 903 Hz (a∗ = 77.8 and ω∗

d =159.6). The
light intensity fluctuation i(t), the corresponding power spectrum P (f /fd), and the
autocorrelation function γ (t/T ) are shown in figures 8(g)–8(i), respectively. The power
spectrum shows equally strong subharmonic and harmonic motions across the drop
interface. There is a spectral peak in the power spectrum at f ≈ 0.11 fd , which is close
to the observed modulation frequency of the lattice pattern f ≈ 0.1 fd . However,
its power magnitude is significantly lower than the subharmonic and harmonic
components of the motion (Figure 8h). The lattice pattern persisted in the drop
until the forcing amplitude was increased to about a ≈ 55g (a∗ ≈ 111).

3.5. Pre-ejection mode

Once the symmetry of the lattice mode was broken (figure 5e) at a forcing amplitude
of a ≈ 55g, a more complex state appeared containing individual wave cells. These
cells became more clearly defined as the forcing amplitude increased until the onset
of droplet ejection at a = 136g (figure 5f ).

The light intensity measurements on the drop interface for the pre-ejection mode
are shown in figures 8(j )−8(l) for r/Rc = 0.6, a = 136g, and fd =903 Hz (a∗ = 275.0
and ω∗

d =159.6). The first subharmonic peak in the power spectrum (figure 8k) is
now slightly larger than the harmonic peak. There is some broadening of all spectral
peaks and a general increase in the low-frequency portion (f /fd < 0.5) of the power
spectrum, indicating increased disorder in the wave motion. Furthermore, the autocor-
relation function (figure 8l) drops sharply within 20 T (at the subharmonic frequency).

These observations are similar to observations from earlier Faraday-wave
experiments (see the review by Miles & Henderson 1990, for other examples). This
global, qualitative description of the localized interface motion is also in accord with
results from the non-optical measurements of Faraday waves reported by Cabeza et al.
(2000). However, in contrast to the classic Faraday-wave experiment, the dominant
subharmonic motion in the pre-ejection mode of the forced drop is preceded by
multiple transitions associated with the geometry of the sessile drop and the small-
displacement-amplitude high-frequency forcing used in this work. Similarly, Douady
(1990) showed that when the liquid layer in a Faraday-wave experiment is not perfectly
flat, harmonic waves generated by the meniscus at the boundary interfere and compete
with the parametric waves. In the present experiments, harmonic motion is present in
the wave dynamics at all times, while the energy content of the subharmonic motion
appears with the azimuthal wave instability and progressively increases as the forcing
acceleration increases. The complex dynamics seen on the interface of the forced drop
and the drop’s ultimate breakup are governed by the nonlinear interactions between
the forced harmonic motion and the parametrically driven subharmonic motion.

4. Low-dimensional description of the temporal disorder
To further characterize the interfacial motion prior to the onset of droplet ejection,

the light intensity from a point on the interface of the drop was measured phase-
locked to the driving signal. Phase-locked measurements attenuate the effect of
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frequencies higher than the driving frequency, including higher harmonics, and
therefore emphasize the effect of the driving frequency on the interfacial motion.
The resulting data are presented using a polar plot of light intensity versus phase of
the driving signal, which is called a phase-orbit plot.

The measurements were done as follows. The frequency of the driving signal to
the drop was set to 1000 Hz. The amplitude of the signal was slowly ramped to a
prescribed level and then held fixed for approximately 5 s to ensure that the desired
interfacial mode shape was fully established and periodic. The sampling rate of the
video camera was set to 10 000 f.p.s., providing ten measurements per driving period
or one measurement every 36◦ of phase in the driving signal. The light intensity from
the radial locations corresponding to figure 8 was sampled for 0.8 s (800 T ) following
the establishment of the interfacial motion.

Figure 13 shows six phase-orbit plots corresponding to axisymmetric waves,
azimuthal waves, the lattice mode and the pre-ejection mode. These modes are
visualized in figure 5(a, b, d , f ) with a slightly lower frequency. The phase orbit
for axisymmetric waves (figure 13a) is a single-loop closed orbit indicating harmonic
motion of the waves. The overlapping of the orbits during 800 periods of the driving
signal shows that there is little change in phase of the interfacial motion relative to
the driving signal during this time interval.

The phase orbit for azimuthal waves just after onset is shown in figure 13(b). The
two loops in the orbit are formed over a period of 2 T indicating period doubling due
to the subharmonic motion present on the interface. The overlapping of these double-
loop orbits shows that the phase of the interfacial motion relative to the driving signal
stays relatively fixed, and that there is little change in the phase difference between
the subharmonic and harmonic motions on the interface of the drop.

The phase orbit for the lattice mode (figure 13c) is much thicker than the phase orbit
for azimuthal waves. The underlying double-loop orbit is still present as shown in the
phase orbit of figure 13(e), which represents only six consecutive periods of motion.
The thickening of the orbit is due to a continuous loss in the phase coherence of
the motion. The double loops nearly coincide over consecutive periods of the driving
signal, but a slight shift in the phase occurs over time. There are no sharp changes in
the relative phase between the subharmonic and harmonic motions, but the overall
phase coherence with the driving signal is weakly disrupted. The underlying structure
of the motion for the lattice mode, not captured in figure 13(c), will be described
below.

Figure 13(d) shows the phase-orbit plot for the pre-ejection mode. The underlying
double-loop orbit is still present, as seen in figure 13(f ) showing data for only six
consecutive driving periods, but a distinguishable loss of coherence is visible between
the subharmonic and harmonic motions after each consecutive driving period. Overall,
the thick annular region covered by the phase orbit over a time period of 800 T in
figure 13(d) indicates that there is virtually no phase coherence between the interfacial
motion and the driving signal.

An easier way to see the existence of phase coherence, or lack thereof, in a phase-
locked data set is to display the data in a phase-cut plot. A phase cut is a subset of
the original phase-locked data taken at a particular phase φ0 in the phase orbit for
every period T of the original data. The resulting data Ii , where i is the index of the
period, are plotted as the (x, y)-point (Ii , Ii + 1) for all periods i.

The phase-cut plots (with φ0 = 72◦) corresponding to the phase orbits from figure 13
are presented in Figure 14. The values corresponding to odd and even driving
periods are marked in filled and open symbols, respectively. For axisymmetric waves
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Figure 13. The variation in the light intensity I with respect to the phase φ of the driving
signal from a drop with volume V ∗ = 1.77 (100 µl) at a driving frequency ω∗

d = 176.7:
(a) axisymmetric waves (a∗ = 37.8, r/Rc = 0.6), (b) azimuthal waves (a∗ = 55.2, r/Rc = 0.93),
(c) lattice mode (a∗ = 104.7, r/Rc = 0.6), and (d) pre-ejection mode (a∗ =284.9, r/Rc =0.6).
The variation of the light intensity during six consecutive driving periods is shown in (e) for
the lattice mode and (f ) for the pre-ejection mode.

(figure 14a), there is one small cluster of points containing both odd and even driving
periods. This indicates harmonic motion with good phase coherence. The phase-cut
plot for azimuthal waves (figure 14b) shows two tight clusters of points, one for odd
periods and one for even periods. This means that the interfacial motion on the drop
contains both harmonic and subharmonic components and that both components
have good phase coherence.

The only way any conclusions could be drawn from the phase-orbit plot for the
lattice mode (figure 13c) and the pre-ejection mode (figure 13d) was to view the
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Figure 14. Phase-cut plots of the light intensity I at odd (�) and even (�) periods of the
driving signal at φ0 = 72◦; (a–d) correspond to the states in figure 13(a–d) respectively.

data for only a few periods (figure 13e,f ). Figure 14(c) shows the phase-cut plot for
the lattice mode. Here, the odd and even periods each have a distinct cluster that
overlap slightly. The two clusters show that the underlying interfacial motion still
has a distinct subharmonic component. The larger size of both clusters compared to
those from figures 14(a, b) indicates a loss of phase coherence for the lattice mode.
The phase-cut plot for the pre-ejection mode (figure 14d) shows only one large cluster
containing both odd and even modes. This plot confirms the complete loss of phase
coherence in the interfacial motion for the pre-ejection mode that precedes interface
breakup.

5. Conclusions
The present investigation examined the evolution of interfacial waves on a sessile

water drop forced to vibrate vertically at frequencies from zero to about 1 kHz by
an underlying piezoelectric transducer. The motion of the diaphragm supporting the
drop applied a radially varying acceleration field to the drop. The largest variation
in acceleration, which occurred for the largest drop, was 15 % between the centreline
and the contact line of the drop.

The drop was small enough to be close to the shape of a spherical-cap drop. For the
largest drop, gravity flattened the drop so that the measured radius of the contact line
was 8 % larger than the contact radius of a spherical-cap drop with the same volume
and contact angle. The spreading was less than 9 % for the smaller drops. Although
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gravity did cause the static drop shape to spread out, there was no discernible effect
of gravity on the dynamical drop motion seen in this work.

When the driving amplitude was slowly increased from zero, the drop exhibited the
following sequence of motions: axisymmetric standing waves that were present with
the smallest driving amplitude; the onset of azimuthal waves at the contact line; fully
coupled azimuthal and axisymmetric waves; the lattice mode; a disordered pre-ejection
mode; and finally, droplet ejection from individual wave cells. Of particular interest
were three primary transitions: from axisymmetric standing waves to azimuthal
waves, the appearance of the newly observed lattice mode, and the appearance of the
disordered pre-ejection state.

The drop dynamics in this problem was nearly inviscid. The viscous boundary layer
on the diaphragm was very small compared to the drop radius. Although distilled
water was used for the drop, an interfacial boundary layer on the drop owing to the
effects of interfacial contamination was not present owing to careful experimental
procedures and the short duration of each experimental run, typically less than 1 min.
Therefore, the only sources of damping in this system were viscous effects in the bulk
liquid, viscous boundary-layer effects near the contact line, and contact-line dynamics.
However, contact-line dynamics only became important for the higher values of the
forcing acceleration, which released the pinned contact line from the solid surface of
the diaphragm.

The forced axisymmetric standing waves in the drop were harmonic with the
driving frequency and stayed relatively phase-locked to the motion of the diaphragm.
A discrete set of axisymmetric resonance modes were recorded with mode numbers
m =1–14. The resonance frequencies scaled with the same capillary time scale used for

an isolated drop, i.e. ωm ∼
√

σ/ρR3, where R is the radius of curvature of a spherical-
cap drop with the same volume and contact angle. The dimensionless resonance
frequencies depended only on the mode number. Contact-angle and gravity effects
were negligible for the drop sizes investigated (<100 µl). No macrosopic motion of
the contact line was observed at any acceleration amplitude for this mode. Thus, it
appeared that the contact line remained pinned at all times.

Azimuthal waves appeared around the contact line of the drop when the driving
acceleration exceeded a well-defined critical level. They were subharmonic to the
driving frequency and remained relatively phase locked to the motion of the
diaphragm. The critical acceleration and wavenumber for this parametrically driven
instability were compared to those for finite-depth, capillary Faraday waves with
viscous dissipation as computed by Kumar (1996) and Christiansen et al. (1995). The
critical wavenumbers for the azimuthal waves were consistently lower than those for
Faraday waves, and the critical accelerations were consistently higher. These results
suggest that viscous dissipation is stronger for azimuthal waves.

One possible source for this increased damping is contact-line dynamics. The
contact line appeared to be pinned during the axisymmetric drop motion, but it was
not possible to verify contact-line oscillations, or the lack thereof, during the onset
of azimuthal waves. Another possible source for this increased dissipation could be
the viscous boundary layer at the solid–liquid interface near the contact line. This
boundary layer has a negligible effect on finite-depth Faraday waves in a liquid layer
because it is far enough away from the wave motion at the interface. However, for
azimuthal waves in a drop, the solid surface intersects the contact line of the drop,
and so the viscous boundary layer could contribute to the dissipation of the wave
motion in this region. Some evidence for this idea was observed in a preliminary
experiment with a water/glycerine mixture. For a fluid mixture with a viscosity about
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twenty times that of pure water, the azimuthal instability at the contact line was
completely suppressed. The first observed instability in this case occurred over the
entire interface of the drop.

The data presented in this work suggest a possible mechanism for the azimuthal
instability. The geometry of the sessile drop converts the vertical vibration of the
diaphragm to a significant radial motion of the interface near the contact line. This
radial motion, which is approximately normal to the interface for contact angles near
90◦, as seen in these small drops, undergoes a Faraday capillary-wave instability.

It is worth noting that the azimuthal instability seen in the present work is similar
to the triplon modes in vertically vibrated liquid puddles reported by Noblin et al.
(2005). Both instabilities are subharmonic with a dispersion relation that scales as
ω ∼ k3/2, the same as for capillary Faraday waves.

Increasing the driving amplitude still further caused the azimuthal waves to spread
toward the centre of the drop. Above another clear threshold acceleration level, a
striking lattice mode emerged. To our knowledge, this is the first time that such a
mode has been observed in a forced sessile drop. The lattice mode is characterized
by equally strong subharmonic and harmonic motions. The phase of the lattice mode
does not stay locked to the motion of the diaphragm.

Further increases in the driving amplitude destroyed the lattice mode and brought
the drop motion to a more disordered state with well-defined wave cells covering
the interface of the drop. This state, called the pre-ejection mode, existed until the
driving amplitude reached another threshold level. At this point, the wave amplitude
of individual wave cells became large enough to start ejecting small droplets from
the crest of the wave in the cell. The dominant frequency of the pre-ejection mode
was subharmonic to the driving frequency and the phase showed no coherence with
the motion of the diaphragm. The emergence of this subharmonic-dominant wave
pattern suggests that the pre-ejection mode would also be the normal end state for
Faraday waves in a highly forced liquid layer.

In summary, this work has produced new fluid dynamical observations involving
the dynamics of a vertically vibrated sessile drop. The new phenomena are the result
of a parametrically driven instability of the forced axisymmetric waves in the drop,
which produce new non-equilibrium wave patterns on the interface of the drop.

The authors wish to thank Dr Arne Pearlstein and Dr Michael Schatz for insightful
discussions and useful suggestions during the course of this investigation. This work
was supported by NASA Microgravity Research Division, Grant NAG3-1949.
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